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In this text, we will explain in details portfolio theory introduced in
Chapter 16 in [CT12]. We add missing assumptions of the theory and prove
their consequences that are only sketched in the book. We follow the nota-
tion of [CT12].

We consider m stocks, m ≥ 2, in which we can and must invests all our
money A (the situation when we do not invest all our money can be included
in the analysis by simply add one virtual ”stock” representing non-invested
money that does not change in time). The question is how to maximize our
relative revenue that can be written as

S =

∑m
i=1AiXi

A
,

where Ai is a part of our money invested into the i-th stock, Xi is the ratio
of the unit price of the stock at the end of the investment period divided by
the unit price of the stock at the beginning of the investment period (the
higher, the better for the investor). The evolution of the unit price of the
stock in time is in reality very uncertain, so we represent it by a random
variable. We assume that the random variables are determined by external
factors and are not influenced by the amount of money we invest in them
(we are a small investor with a negligible influence on the market). Hence,
we would like to chose optimally the proportions Ai with respect to given
Xi’s. The proportions can be represented by a vector b from the set

B = {(bi)i≤m |
m∑
i=1

bi = 1, bi ≥ 0},

where Ai := biA. The relative revenue corresponding to a b ∈ B can be
written as follows:

bX =

m∑
i=1

biXi.
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Since b represents the way how we invest our money into different stocks,
bets or assets, we call b itself a portfolio.

The revenue bX is a random variable, hence comparing bX and b′X is
highly nontrivial problem. One can compare their expectations, or do some
more sophisticated analysis of their means, variances or quantiles in the way
of “Mean-variance” or “VaR”, “CVaR” theories. We will explain that there
are good reasons to focus on the expectation of the logarithm, called the
doubling rate. It is defined by the formula

W (b) := E ln bX.

For simple theory, it will be plausible to have (well defined) finite expec-
tation and variance of ln bX for all b. Unfortunately, these assumptions do
not apply on betting on a horse race, where bX can be zero with non-zero
probability. In such a case, log bX is not defined with non-zero probability
and expectation does not exists. The way, how to include it into our theory
is to extend the definition of logarithm in usual way, log 0 := −∞, allow −∞
as an accepted value for log bX and for its expectation. Finally, we relax
our assumptions on portfolios in the following way: For every b ∈ B,

(P1) log bX is well defined, log 0 = −∞, (bX(ω) ≥ 0 for all ω ∈ Ω).

(P2) E(log bX) < ∞ (−∞ is allowed).

Since W admits the value −∞, W : B ⊂ Rm → [−∞,+∞). For non-
trivial theory about W , we ask for its non-triviality, i.e. it must not be equal
to −∞ all the time. In other words, we assume

(P3) there exists b ∈ B, E(log bX) is finite.

1 Basic properties of the random revenue and the
doubling rate function

In the remaining part of this section, we investigate main properties of W
and tie the conditions above with similar conditions posed on Xi’s.

By linearity, the non-negativity of bX is equivalent to non-negativity of
Xi’s. In other words, condition (P1) is equivalent to

(C1) Xi(ω) ≥ 0, for every i ≤ m, ω ∈ Ω.
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From now on, we will assume that this condition holds. Let us notice that
in such a case, vX ≥ 0 for sure for every v ∈ [0,∞)m and log vX ∈ [−∞,∞)
is well defined.

The following lemma applied on the case f(x) = log x helps us to find
bounds for log bX in terms of logXi’s.

Lemma 1. Let k ∈ N, xi, i ∈ k, be points in a non-empty interval I ⊂ R,
f be a monotone (not necessarily strictly) real function on I, α. For every
(αi)i≤k ∈ Rk, such that αi ≥ 0,

∑
i≤k αi = 1, the following inequalities hold:

|f(
k∑

i=1

αixi)| ≤
k∑

i=1

|f(xi)|.

If f is increasing, then

f(
k∑

i=1

αixi) ≤
k∑

i=1

f+(xi), f(
k∑

i=1

αixi) ≥
k∑

i=1

f−(xi).

Proof. A weighted average
∑k

i=1 αixi of numbers xi, i ∈ k, lies in between
the maximum and minimum of the numbers, in particular it lies in the
interval I). If f is increasing, then

f(

k∑
i=1

αixi) ≤ f(max
i≤k

xi) = max
i≤k

f(xi) ≤ max
i≤k

f+(xi)

≤
k∑

i=1

f+(xi) ≤
k∑

i=1

|f(xi)|,

f(

k∑
i=1

αixi) ≥ f(min
i≤k

xi) = min
i≤k

f(xi) ≥ min
i≤k

f−(xi)

≥
k∑

i=1

f−(xi) ≥
k∑

i=1

−|f(xi)| = −
k∑

i=1

|f(xi)|.

All three inequalities were proved for an increasing function.
If f is decreasing, we can apply the first inequality of the lemma on

increasing g = −f . Hence,

| − f(
k∑

i=1

αixi)| ≤
k∑

i=1

| − f(xi)|.
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But the minus sign can be ignored because of the modulus. So the first
inequality holds also for decreasing functions.

Let us recall, that a set A ∈ Rk is convex, if for every v, v′ ∈ A, α ∈ (0, 1),
the convex combination (1− α)v + αv belongs to A.

In addition, finiteness of the expectation of a random variable Y is equiv-
alent to finiteness of the expectation

Y + = max(Y, 0), Y − = min(Y, 0).

Moreover, E(Y ) < ∞ iff E(Y +) < ∞.

Lemma 2. For a monotone function f : [0,∞) → R, set

{b ∈ B|E(f(bX)) is finite}

is convex.
For an increasing function f : [0,∞) → R, sets

{b ∈ B|E(f(bX)) < +∞} and {b ∈ B|E(f(bX)) > −∞}

are convex.

Proof. Let f be increasing, b, b′, α ∈ (0, 1), b′′ = (1−α)b+αb′. If the expec-
tations of f(bX) and f(b′X) are smaller than +∞, we apply the previous
lemma in the following way:

f(b′′X) = f((1− α)bX + αb′X) ≤ f+(bX) + f+(b′X).

By the monotonicity and linearity of expectation,

Ef(b′′X) ≤ E(f+(bX) + f+(b′X)) = E(f+(bX)) + E(f+(b′X)) < +∞.

Hence, the former set from the statement for an increasing function is con-
vex. The convexity of the latter set follows similarly from the lower bound
f(b′′X) in the previous lemma.

If f is monotone, the previous lemma ensures that |f(b′′X)| is bounded
by the sum of |f(bX)| and |f(b′X)|. Passing to the expectation, we conclude
that E|f(b′′X)| is finite.

Let us remark, that convexity of a set does not tell much about its ”size”,
it can be even empty.

Let us denote by e(j), j ≤ m, the canonical basis of Rm, i.e.

e(j) = (e
(j)
i )i≤m, e

(i)
i = 1, e

(j)
i = 0 for i ̸= j.

Then e(j)X =
∑m

i=1 e
(j)
i Xi = Xj , for every j ≤ m.
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Proposition 1. Sets

{b ∈ B|E(log(bX)) is finite}, {b ∈ B| log(bX) < +∞}

{b ∈ B|Var(log(bX)) is finite}

are convex.
If E(logXi) < +∞, for every i ≤ m, then E(log bX) < +∞ for every

b ∈ B.

Proof. Since Xi = e(i)X and any b ∈ B is a convex combination of vectors
e(j)’s, the last part of the lemma is a corollary of the convexity of the sets.

First two sets are convex, since logarithm is increasing, so we can apply
Lemma 2.

The finiteness of Var(log(bX) is equivalent to the finiteness of the ex-
pectation and the second moment E(log2 bX). Let us suppose that b, b′ ∈ B
such that Var(log(bX) and Var(log(b′X) are finite. Let α ∈ (0, 1), b′′ =
(1−α)b+αb′. Applying the convexity of the first set from the statement of
the proposition, we get that E(log(b′′X)) is finite.

Although log2 x is not monotone, it can be written as the sum of two
monotone non-negative functions

f1(x) = log2max(x, 0), f2(x) = log2min(x, 0).

Applying Lemma 2, E(f1(b′′X)) and E(f2(b′′X)) are finite. Hence,

E(log2(b′′X)) = E(f1(b′′X)) + E(f2(b′′X)) < ∞.

It means, that the last set is convex.

For the rest of the text, we will assume that the following conditions
hold:

(C1) Xi(ω) ≥ 0, for every i ≤ m, ω ∈ Ω,

(C2) E(logXi) < +∞, for every i ≤ m.

The crucial property of W is its concavity that allows us to use all
the machinery of convex analysis and convex optimization methods (these
mathematical branches deal with convex as well as with concave functions).
For the theory of convex analysis see [Roc70], for optimization see [BV04].

A function f defined on a convex set A ∈ Rk is concave on the set, if for
every v, v′ ∈ A, α ∈ (0, 1),

f((1− α)v + αv′) ≥ (1− α)f(v) + αf(v′).
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We allow f to admit value −∞, but not +∞. In this case, the sum on
the right side of the inequality makes always sense and so the inequality.

Proposition 2. Function W is concave on B.

Proof. Let b, b′ ∈ B, α ∈ (0, 1). Since the logarithm is concave, for every
ω ∈ Ω,

log(((1− α)b+ αb′)X(ω)) = log((1− α)bX(ω) + αb′X(ω))

≥ (1− α) log bX(ω) + α log b′X(ω).

By monotonicity and linearity of the expectation,

W ((1− α)b+ αb′) = E(log((1− α)b+ αb′)X)

≥ E((1− α) log bX + α log b′X)

= (1− α)E log bX + αE log b′X)

= (1− α)W (b) + αW (b′).

Therefore, W is concave.

In fact, function −W is a proper convex function on B, i.e. it is convex
and does not admit −∞ as its value. Moreover, Fatou’s lemma ensures that
the lower level sets {b ∈ B | (−W )(b) ≤ α} are relatively closed in B for all
α ∈ R. In such a case, (−W ) is continuous on B and attained its minimum
(see [Roc70]). If we rewording this fact for W itself, we get the following
proposition.

Proposition 3. Function W is continuous on B and attain its maximum
on B.

Define the support of a vector v ∈ Rm as supp(v) = {i | vi = 0}.

Proposition 4. Let us assume, that there is b ∈ B with finite W (b), i.e.
W (b) > −∞. Then W (b′) is finite whenever supp(b) ⊂ supp(b′) (non-zero
places in b must be non-zero also in b′).

Proof. Let J = supp b, J ⊂ supp b′, i.e. b′i > 0 for every i ∈ J . Put

c = mini∈J
b′i
bi
. Thus, c > 0 and

b′X =
∑
i≤m

b′iXi ≥
∑
i∈J

b′iXi =
∑
i∈J

cbiXi = c · bX.
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By monotonicity of logarithm,

W (b′) = E log b′X ≥ E log(c · b′X) = log c+ E log(b) = log c+W (b) > −∞.

This proposition shows that the condition P (3) is equivalent with the
following conditions (provided m ≥ 2).

P(3’) For all b ∈ B with strictly non-zero coordinates, W (b) is finite.

The condition asserts finiteness of W in the interior of B, in other words
function W can be infinite only on the border of B, when some of bi’s is
zero.

Moreover, the condition can be expressed in terms of origin variables
Xi’s as follows:

(C3) The expectation of doubling rate for uniform portfolio is finite, i.e.
W ( 1

m , 1
m , . . . , 1

m) = E log 1
m

∑m
i=1Xi is finite.

We suppose this condition to be valid in the remaining text.
Let us point out, that the conditions (C1) and (C2) are posed on the

individual variables Xi’s. Hence, the interference between the variables are
not constrained in any way. The conditions are satisfied in many common
examples. It holds in the case of bounded non-negative variables, e.g. non-
negative discrete random variables with finitely many values, or variables
uniformly distributed on an interval (a, b), where a ≥ 0. It holds also for
unbounded variables with a finite mean, e.g. log-normal variables, or ex-
ponential ones. The variables from all the mentioned classes can be freely
combine. The theory need not to have all variables from one class. Condi-
tion (C3) depends on interference between the random variables X ′

is. We
will discuss it on different betting schemes.

Finding the log-optimal portfolio is usually difficult and some iterative
methods, or Monte Carlo are necessary to find the optimum. Nevertheless,
the presented theory is essential to prove that the approximative methods
will converge to the right solution.

At the end of this section, we show how the finiteness of variance of the
portfolio is related to respected variances of each stock.

Proposition 5. Let us assume, that there is b ∈ B with finite V ar(log bX).
Then V ar(log b′X) is finite whenever supp(b′) = supp(b) (non-zero places
in b and in b′ must coincide, i.e. an investor holds the same stocks, but
different quantities).
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Proof. Put J = supp b = supp b′. Therefore bi > 0 and b′i > 0 for every
i ∈ J and there exist constants. Let α and β be minimum and maximum of

ratios
b′i
bi
, i ∈ J , respectively. Thus, α, β > 0 and

αbX ≤ b′X ≤ βbX, log(αbX) ≤ log(b′X) ≤ log(βbX).

It implies,

| log(b′X)| ≤ max(| log(αbX)|, | log(βbX)|)
≤ max(| logα|+ | log bX|, | log β|+ | log bX|)
≤ | logα|+ | log β|+ | log bX|.

Denote c = | logα|+| log β|. By the assumptions of the proposition, E(log bX)
and E(log2 bX) are finite. Therefore,

0 ≤ E| log(b′X)| ≤ c+ E| log(bX)| < +∞,

0 ≤ E(log(b′X)) ≤ E((c2 + 2c| log(bX)|+ | log(bX)|2)
≤ c2 + 2cE| log(bX)|+ E(log2(bX)) < +∞.

This proposition shows that the following conditions are equivalent:

1. For all b ∈ B with strictly non-zero coordinates, Var log bX is finite.

2. There exists b ∈ B with strictly non-zero coordinates such that Var log bX
is finite.

3. Var log( 1
m

∑m
i=1Xi) is finite.

It suggests that in many common examples, at least an interior of B will
represent the portfolios with finite Variance of log bX.

2 Differential analysis of the doubling rate

In this section, we prove an equivalent conditions for a log-optimal portfolio
b∗ ∈ B. Let us recall, that a log-optimal portfolio is such b∗ ∈ B where W
attains the maximum, i.e.

W ∗ = W (b∗) ≥ W (b), b ∈ B.

8



All the time we suppose that conditions (C1), (C2) and (C3) hold. In
particular, W is never plus infinity, admits finite values, is concave, contin-
uous and attain its maximum on B. Nevertheless, the log-optimal portfolio
need not be unique and we will rather talk about the set of log-optimal
portfolios. The set of points, where W attains its maximum on B, is closed
and convex, and it is a subset of

B+ = {b ∈ B | W (b) is finite}.

For further results we need differential calculus. The key notion will be
the directional derivative.

Definition 1. For b ∈ B, v ∈ Rm, we define the directional derivative of
W by the formula

W ′(b; v) = lim
α↓0

W (b+ αv)−W (b)

α
.

We allow infinite limits, therefore infinite directional derivatives. The
directional derivative Because of the concavity of W , the directional deriva-
tives exist whenever b ∈ B+ and v = b′ − b, where b′ ∈ B.

For b, b′ ∈ B+, α ∈ [0, 1], let us denote the relative change of logarithm
of the revenue passing from portfolio b to portfolio (1− α)b+ b′ as

ηb,b′,α :=
1

α

(
log((b+ α(b′ − b))X)− log bX

)
.

Since revenues are random, the relative change ηb,b′α is a random variable
defined on Ω with values in R.

It has the following properties.

Lemma 3. For every b, b′ ∈ B+, α ∈ [0, 1],

log b′X − log bX ≤ ηb,b′,α ≤ 1

ln 2

(
b′X

bX
− 1

)
.

pointwise. For every ω ∈ Ω,

lim
α↓0

ηb,b′,α(ω) =
1

ln 2

(
b′X(ω)

bX(ω)
− 1

)
.

Proof. Let b, b′ ∈ B+, α ∈ [0, 1]. Let us recall that for such a choice of
parameters, log bX, log b′X and ηb,b′,α are well defined everywhere (for every
ω ∈ Ω). In addition,

(b+ α(b′ − b))X = ((1− α)b+ αb′)X = (1− α)bX + αb′X.
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By Jensen’s inequality,

ηα =
1

α

(
log((1− α)bX + αb′X)− log bX

)
≥ 1

α

(
(1− α) log(bX) + α log(b′X)− log bX

)
= log b′X − log bX.

By the inequality ln(1 + x) ≤ x, x > 0,

ηα =
1

α
log

(b+ α(b′ − b))X

bX
=

1

α
log

(
1 +

α(b′ − b)X

bX

)
=

1

α ln 2
ln

(
1 +

α(b′X − bX)

bX

)
≤ b′X − bX)

bX ln 2
=

1

ln 2

(
b′X

bX
− 1

)
.

Let ω ∈ Ω. If bX(ω) = b′X(ω), then

lim
α↓0

ηb,b′,α(ω) = 0 =
1

ln 2

(
b′X(ω)

bX(ω)
− 1

)
.

If bX(ω) ̸= b′X(ω), we use the fact that limx→0
ln(1+x)

x = 1:

lim
α↓0

ηb,b′,α(ω) = lim
α↓0

1

α ln 2
ln

(
1 +

α(b′X(ω)− bX(ω))

bX(ω)

)

= lim
α↓0

ln
(
1 + α(b′X(ω)−bX(ω))

bX(ω)

)
α(b′X(ω)−bX(ω))

bX(ω)

·
α(b′X(ω)−bX(ω))

bX(ω)

α ln 2

=
b′X(ω)− bX(ω)

bX(ω) ln 2
=

1

ln 2

(
b′X(ω)

bX(ω)
− 1

)
.

Proposition 6. If b, b′ ∈ B+, then

W ′(b; b′ − b) =
1

ln 2

(
E
(
b′X

bX

)
− 1

)
.

Proof. The only nontrivial equality is the first one. Others follow from the
linearity of S and expectation. By the definition,

W ′(b; v) = lim
α↓0

E(ηb,b′,α).
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Moreover, all random variables ηb,b′,α, α ∈ (0, 1), satisfies the condition

log b′X − log bX ≤ ηb,b′,α ≤
(
b′X

bX
− 1

)
1

ln 2
,

Since b, b′ ∈ B+, the lower bound is a random variable of finite expectation.
If the upper bound has a finite expectation too, than we can apply Lebesgue
dominated theorem and exchange the expectation and the limit. In other
words,

W ′(b; v) = E lim
α↓0

(ηb,b′,α) = E
(

1

ln 2

(
b′X

bX
− 1

))
=

1

ln 2

(
E
(
b′X

bX

)
− 1

)
.

If the upper bound has not finite expectation, it has expectation equal to
+∞. In such a case, Lebesgue dominated theorem can not be used. Instead,
we can use Fatou’s lemma that ensures that the expectation of the limit is
smaller or equal to the limit of expectations. Thus,

W ′(b; v) = lim
α↓0

E(ηb,b′,α) ≥ E
(
b′X

bX
− 1

)
1

ln 2
= +∞.

Hence, the proof works even in the case, when the derivative is infinite.

Theorem 7. Let b∗ ∈ B+. The following three conditions are equivalent:

1. b∗ is a log-optimal portfolio,

2. for every b ∈ B+,

E
(

bX

b∗X

)
≤ 1.

3. for every i ≤ m,

E
(

Xi

b∗X

)
= 1, if b∗i > 0,

E
(

Xi

b∗X

)
≤ 1, if b∗i = 0.

Proof. Let b∗ be a log-optimal portfolio. It means that W (b) ≤ W (b∗) for
every b ∈ B+. By convexity, it is equivalent with the condition that the
directional derivative towards b, W ′(b∗, b − b∗), is positive, for no b ∈ B+.
This can be immediately rephrased into the second condition of the theorem.
So the first two conditions are equivalent.
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Let us suppose the second condition holds. For i ≤ m, b = b∗+e(i)

2 ∈
B+ (e(i) was defined as a unit vector in the positive direction of the i-th
coordinate, b∗ ∈ B). By our assumptions,

E
(

bX

b∗X

)
= E

(
1
2(b

∗X +Xi)

b∗X

)
=

1

2

(
1 + E

(
Xi

b∗X

))
≤ 1.

It follows immediately, that E
(

Xi
b∗X

)
is at most 1, for every i ≤ m. In order

to prove equality in the case b∗i > 0, we need to prove the opposite inequality
in such a case,

1 = E
(
b∗X

b∗X

)
=

m∑
i=1

E
(
b∗iXi

b∗X

)
=

m∑
i=1

b∗iE
(

Xi

b∗X

)
.

Therefore, the weighted average of E
(

Xi
b∗X

)
, i ≤ m, equals one. But all

of the values are proved to be smaller or equal to one. It implies, that the
values with non-zero weight b∗i has to be equal one. This concludes the proof
of the implication “(2) ⇒ (3)”.

The backward implication is easy. If (3) holds, b ∈ B+, then

E
(

bX

b∗X

)
=

m∑
i=1

E
(
biXi

b∗X

)
=

m∑
i=1

biE
(

Xi

b∗X

)
≤

m∑
i=1

bi · 1 = 1.

3 Applications

3.1 Betting on mutually disjoint but exhaustive events -
horse race, no money aside

We can divide our money and bet on horses in a race. If a horse win,
our stake will be multiplied by given odd oi. Hence, there are given odds
(oi)

m
i=1 and probabilities pi’s and our revenue can be described as bX =∑m

i=1 biXi, where the random vector of relative unit-price changes X =
(X1, X2, . . . , Xm) is described as follows:

X = e(i) · oi, with probability pi, 1 ≤ i ≤ m.

In other words, vector X has just one non-zero coordinate that agrees with
the horse that wins. In fact, the only random part of the problem is the result
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of the race. It leads to another useful description where X is a transforma-
tion of the random variable Y that represents the number of the winning
horse. So

Y = i, with probability pi, 1 ≤ i ≤ m.

Vector X can be derived from Y as follows, namely

Xi =

{
oi, if Y = i

0, otherwise.

We can now describe the ratio from Theorem 7 for every b ∈ B+.

Xi

bX
=

{
oi
bioi

, if Y = i

0, otherwise.

and the expectation

E
(
Xi

bX

)
=

m∑
j=1

P(Y = j)E
(
Xi

bX
| Y = j

)
= P(Y = i) · oi

bioi
=

pi
bi
.

Let us point out that W (b) > 0 implies bX > 0 for sure. It is true only
if bi > 0 and oi > 0, for every i ≤ m. Hence, the ratios above and below are
well defined.

By Theorem 7, a log-optimal portfolio b has to satisfy

pi
bi

≤ 1, if bi = 0,

pi
bi

= 1, if bi > 0.

The first condition is a logic non-sense. Fortunately, we have already
explain that bi is always non-zero. Hence bi = pi for every i ≤ m.

3.2 Betting on mutually disjoint events with the possibility
of money aside

In this case we do not require the events we can bet on are exhaustive. We
have m mutually exclusive events Ai, i ≤ m, each happens with probability
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pi. In such a case, our stake bi will be multiplied by an odd oi, i ≤ m. If
the rules of the game does not allow to bet on some horses, we can express
it via the corresponding odd equal zero. Indeed, if there are zero odds, we
have no reason to bet on them. It is not difficult to prove, that remove some
event from the bookmaker’s offer is the same as set the odd to be zero.

We add one extra event with index 0 which happens with probability one,
where the odd o0 = 1. Our revenue is bX =

∑m
i=0 biXi, where the random

vector of relative unit-price changes X = (X0, X1, X2, . . . , Xm) is described
via an auxiliary variable Y that represents the number of the winning horse:

Y = i, with probability pi, 1 ≤ i ≤ m.

Then X0 = 1 and for i ≥ 1,

Xi =

{
oi, if Y = i

0, otherwise.

In addition,

Xi

bX
=


1

b0·1+bjoj
, if Y = j, i = 0

oi
b0·1+bioi

, if Y = i, i ̸= 0

0, otherwise.

The expectation look as follows:

E
(
X0

bX

)
=

m∑
j=1

P(Y = j)E
(
X0

bX
| Y = j

)

=

m∑
j=1

pj
b0 + bjoj

.

For i ≥ 1,

E
(
Xi

bX

)
=

m∑
j=1

P(Y = j)E
(
Xi

bX
| Y = j

)
= P(Y = i) · oi

b0 + bioi
=

pioi
b0 + bioi

.
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Let us point out that W (b) > 0 implies bX > 0 for sure. It is true if
b0 > 0 or all other bi’s are strictly positive and the events we bet on are
exhaustive. Hence, the ratios above and below are well defined.

By Theorem 7, a log-optimal portfolio b has to satisfy

m∑
j=1

pj
b0 + bjoj

≤ 1, if b0 = 0,

m∑
j=1

pj
b0 + bjoj

= 1, if b0 > 0

and for i ≥ 1,

pioi
b0 + bioi

≤ 1, if bi = 0,

pioi
b0 + bioi

= 1, if bi > 0.

Again, the conditions are a task for linear programming. We can do some
simple observations. First, if the events are not exhaustive, i.e.

∑m
i=1Xi is

zero with non-zero probability, we have to save some money, so b0 > 0.
We have to save some money also in the case when the risk-free revenue
(
∑m

i=1 o
−1
i )−1 < 1. On the other hand, if the events are exhaustive and the

risk-free revenue is larger than one, than b0 = 0.
Another observation is that if we put some money on the horse i, we

have to put some money on every horse j with pjoj ≥ pioi. More literally,
we have to get bioi ≤ bjoj .

3.3 One event and money aside

The problem of betting on one event is described in the pioneering article by
Kelly. In our framework, it is a special case of the settings from the previous
section.We assume that there is a driving random variable Y with values 1
and 2, where Y = 1 when the event happens, Y = 2 if not. In the same way
as in the subsection above, we define derived random variables X0, X1, X2.
Since we can not bet on Y = 2, we put o2 = 0.

Using the results from the previous subsection, a log-optimal portfolio
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has to satisfy b0 > 0,

p1
b0 + b1o1

+
p2
b0

= 1

and for i = 1, 2

pioi
b0 + bioi

≤ 1, if bi = 0,

pioi
b0 + bioi

= 1, if bi > 0.

Let us mention, that for i = 2, the condition is vacuous. Indeed, p2o2
b0+b2o2

equals zero, not one, and we are forced to set b2 = 0 in accordance with the
fact that we can not actually bet on the event Y = 2.

If we set b1 = 0, we get that b0 = 1 and the conditions above are satisfied
iff p1o1 ≤ 1. In other words, it is worth to put some money on the event if
and only if the expected outcome from every dollar placed in the wager is
better than the expected outcome from a dollar not given in the wager. It
seems to be natural. If p1o1 > 0, then o1 > 1 and, by substituting, we get
that the equalities can be satisfied by the portfolio

b0 =
o1 − o1p1
o1 − 1

, b1 =
o1p1 − 1

o1 − 1
, b2 = 0.

3.4 Log-normal portfolio

In the theory of stock market, the rates Xi’s are often supposed to be log-
normal. Even the joint probability distribution is suppose to be multivariate
log-normal. It means Xi = eYi , i ≤ m, where Y = (Yi)i≤m has multivariate
normal distribution given by a vector of expectation µ = (µi)i≤m and the
covariance matrix Σ = (Σi,j)i,j≤m.

It is well known that the expectations and covariances of Xi’s are then

E(Xi) = eµi+
1
2
Σii , Var(Xi, Xj) = eµi+µj+

1
2
(Σii+Σjj)

(
eΣij − 1

)
.

Since logXi = Yi, the doubling rate for extremal portfolios Xi’s is finite
(equal to µi). By convexity, we get that the doubling rate W (b) is finite for
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all portfolios. However, the distribution of the sum or a non-trivial convex
combination of log-normal distributions are not log-normal any more and it
seems to be unknown how to express either the expectation of log bX, or
the expectation of the ratio Xi

bX , used in our theory. As far as the author
of this text know, stochastic simulations are necessary. It can be combined
with some convex optimization methods.

4 Long-run competitive optimality

Log-optimal portfolio is defined as a portfolio with highest expectation of
the logarithm of the revenue bX. It does not mean that the logarithm itself
is the highest among all portfolios for all (random) outcomes. It highly
depends on what random events happen, e.g. which horse wins. In the case
of bad luck, other portfolio could be more profitable. We can not either
say that the log-optimal (or other) portfolio is the best with some fixed
high probability. Even the portfolio that maximizes the expectation of the
revenue can be very unbalanced and can be dominated by another portfolio
with probability larger than 1/2.

Nevertheless, a significant result can be found in the long-run invest-

ments. We consider i.i.d. price evolution of m stocks. Let X(j)
i is a random

change of the price of the i-th stock in the j-th day. It means, if you invest

A dollars in the stock i at the beginning of the j-th day, you will have AX(j)
i

dollars at the end of the day. We assume that each day behaves indepen-
dently of the others but in the same way in the statistical point of view. In

other words, the random vectors of prices for given day, X(j) = (X(j)
i )i≤m,

j ∈ N, forms independent, identically distributed, sequence of multivari-
ate random variables. The time-invariant distribution of X(j) is denoted by
X = (Xi)i≤m. Let us notice, that dependence between the variables inside
a vector X(j) is allowed and it is a usual situation.

We assume that the investor can redistribute her wealth every day, so

its investing strategy consists of a sequence of portfolios b(j) = (b
(j)
i )i≤m,

j ∈ N. The revenue at the end of the n-th day is denoted by Sn((b
(j))nj=1)

where the notation tracks sequence of investor’s wealth redistribution. This
random variable is given by the formula

Sn((b
(j))nj=1) =

n∏
j=1

b(j)X(j) =
n∏

j=1

m∑
i=1

b
(j)
i X

(j)
i .

The relative change of the investor’s wealth is considered, what can be
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also understood in the way that her wealth at the beginning of the very first
day is always normalized to 1.

Even though, the investor has all freedom to change her distribution
every day in different manner, we show that it makes sense in several point
of view to apply every day the same redistribution of the invested money.
The good choice is b(j) = b∗, j ≤ n, where b∗ is the log-optimal portfolio for
rates X.

Theorem 8 (Competitive advantage of log-optimal portfolio). Let X(j) =

(X(j)
i )i≤m, j ∈ N, be a sequence of i.i.d. copies of a coordinate-wise non-

negative multivariate random variable X = (Xi)i≤m. Let b∗ be a log-optimal
portfolio for X, b be another portfolio with strictly lower doubling rate, i.e.
W (b∗) > W (b). If one investor redistributes its wealth every day in the
proportions given by b∗, i.e. her portfolio at each day satisfies b(j) = b∗, and
another investor keeps every day b(j) = b, then for every K > 0,

P
(
S∗
n

Sn
> K

)
→ 1.

It means, that not only in average, but also for ”almost all cases”, the
investor that uses log-optimal redistribution every day will have more money
(at leastK-times) after n days, for n large enough. Hence, she will eventually
dominate every other non-causal strategy. Let us emphasize, that the result
does not compare the logarithm, but the revenues themselves.

Proof. First, we consider finite W (b∗) and W (b). We assume W (b∗) > W (b)
and investigate the revenues

S∗
n =

n∏
j=1

b∗X(j), Sn =

n∏
j=1

bX(j).

Applying logarithm,

logS∗
n =

n∑
j=1

log b∗X(j), logSn =
n∑

j=1

log bX(j).

Since X(j), j ∈ N, are i.i.d. copies of X, (log b∗X(j))∞j=1 are i.i.d. copies of

log b∗X and (log bX(j))∞j=1 are i.i.d. copies of log bX. By the WLLN, see
Corollary 10, for every ε > 0,

P
(∣∣∣∣ logS∗

n

n
−W (b∗)

∣∣∣∣ < ε/2

)
→ 1, P

(∣∣∣∣ logSn

n
−W (b)

∣∣∣∣ < ε/2

)
→ 1.
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Hence, with probability increasing to 1, both conditions are true simultane-
ously. It follows from them that

1

n
(logS∗

n − logSn) > (W (b∗)−W (b)− ε).

By equivalent transformations of the inequality, we get that

P
(
S∗
n

Sn
> 2n(W (b∗)−W (b)−ε)

)
→ 1.

If we choose ε < W (b∗) −W (b), the term 2n(W (b∗)−W (b)−ε) goes to infinity.
In particular, it exceeds any finite K > 0. Therefore, the statement of the
theorem holds.

In the case of infinite doubling rates W (b∗) and W (b), W (b∗) = ∞ or
W (b) = −∞. Instead of log b∗X and log bX, we can consider

Y = min(log b∗X,K ′), Z = max(log bX,K ′′),

Y (j) = min(log b∗X(j),K ′), Z(j) = max(log bX(j),K ′′).

For K ′ large enough, and K ′′ small enough, E(Y ) > E(W ), both are finite.
In addition, (Y (j))∞j=1 are i.i.d. copies of Y and (Z(j))∞j=1 are i.i.d. copies of
Z. It implies that for every ε > 0,

P

∣∣∣∣∣∣ 1n
n∑

j=1

Y (j) − E(Y )

∣∣∣∣∣∣ < ε/2

→ 1, P

∣∣∣∣∣∣ 1n
n∑

j=1

Z(j) − E(Z)

∣∣∣∣∣∣ < ε/2

→ 1.

Hence, with probability converging to 1,

1

n
(logS∗

n − logSn) =
1

n

n∑
j=1

log b∗X(j) − 1

n

n∑
j=1

log bX(j)

≥ 1

n

n∑
j=1

Y (j) − 1

n

n∑
j=1

Z(j) ≥ E(Y )− E(Z)− ε.

By equivalent transformations of the inequality, we get that

P
(
S∗
n

Sn
> 2n(E(Y )−E(Z)−ε)

)
→ 1.

If we choose ε < E(Y ) − E(Z), the term 2n(E(Y )−E(Z)−ε) goes to infinity.
In particular, it exceeds any finite K > 0. Therefore, the statement of the
theorem holds in this case too.
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One has to have in mind that if we allow to the competitor to change
its redistribution during the time, he can get higher revenue with dominant
probability, see ([CT12], the beginning of Chapter 16.6.)

5 Referred theorems

Theorem 9 (Strong law of large numbers (SLLN), [Kle08] Thm 5.17). Let
(Xn)

∞
n=1 be a sequence of real-valued pairwise independent, identically dis-

tributed random variables with finite expectation E(Xn) = µ. Then

lim
n→∞

1

n

n∑
i=1

Xi → µ,

with probability 1.

Corollary 10 (Weak law of large numbers (WLLN)). Let (Xn)
∞
n=1 be a

sequence of real-valued pairwise independent, identically distributed random
variables with finite expectation E(Xn) = µ. Then for every ε > 0,

P

(∣∣∣∣∣µ− 1

n

n∑
i=1

Xi

∣∣∣∣∣ < ε

)
→ 1.

Lemma 4 (Fatou [Kle08]). If fn measurable, fn ≥ f a.s., E(|f |) < ∞, then
the following expectations (might be +∞) exist and satisfy the inequality:

E(lim inf fn) ≤ lim inf(Efn).

Corollary 11. If fn measurable, fn ≥ f a.s., E(f−) > −∞, then the
following expectations (might be +∞) exist and satisfy the inequality:

−∞ < E(f) ≤ E(lim inf fn) ≤ lim inf(Efn).

Proof. We get f− ≤ f ≤ fn, so f− is an integrable minorant and the last
inequality in the statement of the corollary follows from Fatou’s lemma.
Moreover, f− ≤ lim inf fn, thus the integrals are in the same order and both
are not equal to −∞.
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